https://www.construction-physics.com/p/will-we-ever-get-fusion-power
The second avenue of progress since the 1990s has been on inertial confinement fusion. As discussed earlier, inertial confinement fusion can be achieved by using an explosion or other energy source to greatly compress a lump of nuclear fuel. Inertial confinement is what powers hydrogen bombs, but using it as a power source can be traced back to an early concept for a nuclear power plant proposed by Edward Teller in 1955. Teller proposed filling a huge underground cavern with steam, and then detonating a hydrogen bomb within it to drive the steam through a turbine.
The physicist tasked with investigating Teller’s concept, John Nuckols, was intrigued by the idea, but it seemed impractical. But what if instead of an underground cavern, you used a much smaller cavity just a few feet wide, and detonated a tiny H-bomb within it? Nuckols eventually calculated that with the proper driver to trigger the reaction, a microscopic droplet of deuterium-tritium fuel could be compressed to 100 times the density of lead and reach temperatures of tens of millions of degrees: enough to trigger nuclear fusion.
This seemed to Nuckols to be far more workable, but it required a driver to trigger the reaction: H-bombs used fission-based atom bombs to trigger nuclear fusion, but this wouldn’t be feasible for the tiny explosions Nuckols envisioned. At the time no such driver existed, but one would appear just a few years later, in the form of the laser.
No comments:
Post a Comment